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Figure 1. Complete human reconstruction from partial observations in the wild. We present SOAR: Self-Occluded Avatar Recovery.
Given a video of a moving human where parts of the body are entirely unobserved (left), SOAR recovers a photo-realistic avatar with
complete texture and shape (right), by leveraging structural human normal prior and generative diffusion prior.

Abstract
Self-occlusion is common when capturing people in the

wild, where the performer do not follow predefined motion
scripts. This challenges existing monocular human recon-
struction systems that assume full body visibility. We intro-
duce Self-Occluded Avatar Recovery (SOAR), a method for
complete human reconstruction from partial observations
where parts of the body are entirely unobserved. SOAR
leverages structural normal prior and generative diffusion
prior to address such an ill-posed reconstruction problem.
For structural normal prior, we model human with an re-
posable surfel model with well-defined and easily read-
able shapes. For generative diffusion prior, we perform
an initial reconstruction and refine it using score distilla-
tion. On various benchmarks, we show that SOAR per-
forms favorably than state-of-the-art reconstruction and
generation methods, and on-par comparing to concurrent
works. Additional video results and code are available at
https://soar-avatar.github.io/.

* Equal Contribution.

1. Introduction

Recovering life-like human avatar from a single in-the-wild
video, such as internet footage or smartphone capture, is
crucial for advancing virtual reality, robotics, and content
creation. This task is challenging due to dynamic modeling
and the lack of effective multi-view signals [12]. Despite
tremendous progress [23, 30, 40, 50, 58, 59] in recent years,
success in human reconstruction methods in the wild remains
limited. One key reason is that existing approaches often
assume full visibility of the human body, which fails in most
of unscripted casual captures. For this ill-posed problem,
reconstruction alone is insufficient.

We present SOAR, a general system for human avatar
recovery from a single self-occluded video in the wild. In
Figure 1, we demonstrate our setting and results. We tackle
this challenging problem with two key insights. First, to
optimize with ill constraints, we need stronger data terms
and more parsimonious representations. Second, we need to
combine reconstruction with generation based on how many
observations we have. With more observations, we prioritize
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Figure 2. Relation to existing problems. Our problem requires
combining human reconstruction from video frames and human
generation for occluded regions.

reconstruction to preserve details like identity. With fewer
observations, generation becomes crucial. A successful sys-
tem should seamlessly integrate these two components.

Motivated by these two insights, we model the human
avatar as a globally consistent set of Gaussian surfels [9]
with well-defined and easily readable normals. We model
articulation between different poses using a simple forward
mapping with linear blend skinning [35]. We fit this compact,
dynamic human representation to a general self-occluded
video in the wild by incorporating two additional sources of
supervision on top of the input RGB data: structural human
normal prior [51, 52] and generative diffusion prior [48].
They provide strong shape and texture constraints for un-
observed regions, crucial in our challenging problem setup.
To this end, our approach is able to recover complete photo-
realistic avatar with highly detailed geometry, which can be
used for real-time rendering and animation.

To investigate the effectiveness and robustness of our ap-
proach, we compare against reconstruction-based [18, 29]
and generation-based approaches [17] as baselines. We also
compare with concurrent work HAVE-FUN [53] that recon-
structs from partial observations on its own experimental
protocols using the official open-source implementation. Ex-
tensive experiments show that SOAR performs favorably
than state-of-the-art reconstruction and generation methods,
and on-par comparing to concurrent works.

2. Related work
2.1. 3D Gaussian and surfel splatting

Neural rendering has advanced significantly since the in-
troduction of NeRF [36]. 3D Gaussian Splatting [25] is
particularly notable for its efficiency in high-resolution syn-
thesis and real-time rendering. It represents scenes as explicit
3D Gaussians, allowing direct rasterization in pixel space
that is much faster than volume integration. However, 3D
Gaussians struggle with accurate scene geometry recovery.
Various attempts [15, 24, 32] have been made to solve this

problem. Recently, 2D Gaussian Splatting [19] and Gaus-
sian surfels [9] propose to flatten 3D Gaussians into surfels,
making geometry easier to readout and coupled with RGB
rendering. Our work builds on these advancements and use
surfel model for precise human shape recovery while pre-
serving effective appearance modeling.

2.2. Neural rendering for human reconstruction

Neural rendering significantly advances template-based hu-
man reconstruction [5, 10, 11, 45] by allowing 3D avatar
recovery from 2D images. Recent works have focused on
dynamic modeling, out-of-distribution reposing, and runtime
efficiency. NeuralBody [40] and Vid2Avatar [16] are canon-
ical frameworks in the first category. For reposing, Animat-
able NeRF [39], TAVA [30], and InstantAvatar [23] use in-
verse blend skinning or root finding [7] to ensure consistency.
Recent methods [46, 59] employ 3D Gaussians for efficient
rendering. We select GART [29] and GaussianAvatar [18]
as baseline in our experiments. We also compare with con-
current work HAVE-FUN [53] that aims to recover complete
avatar from partial observations on its own benchmarks. We
found that existing benchmarks all assume full-body visibil-
ity, even for our concurrent works, and thus test our methods
on a new evaluation split from DNA-Rendering [8].

2.3. Diffusion prior for human generation

Score distillation sampling [41] has shown that 2D diffusion
models are effective 3D priors for content creation. Since
then, significant progress has been made in making 3D gener-
ation more stable [44, 48], realistic [49] and efficient [47, 54].
In the human modeling community, this paradigm has also
been adopted, with notable works [28, 33, 55] incorporat-
ing predefined SMPL templates [35] to bias the generation
process. Works on human image-to-3D [17, 20, 57] aim to
recover human avatars from a single photo. For example,
TeCH [20] optimizes a differentiable tetrahedron representa-
tion [43] through score distillation, while SiTH [17] directly
optimizes an SDF field from diffused images. We include
SiTH as a baseline in our work. However, these approaches
struggle with video input, resulting in temporally inconsis-
tent prediction when applied frame-by-frame, investigated
in Section 4.3. Our work fuses pose-conditioned, noisy dif-
fusion priors into a single, globally consistent avatar model.

3. Method
We aim to recover photo-realistic human avatar from a single
self-occluded in-the-wild video, where parts of the human
body remain unobserved. This highly ill-posed problem
necessitates stronger priors and better avatar representation.

Existing human reconstruction methods [16, 18, 23, 29–
31, 40] require the performer to reveal 360 views of their
body, which does not often occur in internet videos. Con-
versely, existing human image-to-3D methods [2, 17, 20, 57]
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Figure 3. System overview. Given an input video, we preprocess for frame-wise mask, front and back normal, SMPL-X parameters, as well
as video-level text prompt description (Section 3.1). Our model consists of a canonical Gaussian surfel representation and an articulation
representation (Section 3.2). We perform initial reconstruction while estimating occlusion, producing partially completed avatar due to the
lack of observation (Section 3.3), which is then refined by generative diffusion priors (Section 3.4).

can only condition on one input view, producing inconsistent
results across frames. Our method bridges the gap between
reconstruction and generation, addressing these challenges
to produce consistent and accurate human avatars with self-
occlusion.

The rest of this section is organized as follows. First, we
talk about the preprocessing step given a single in-the-wild
video (Section 3.1) Next, we discuss our avatar model, repre-
sented as a globally consistent set of 3D Gaussian surfels [9]
that transforms from a canonical space to each pose con-
figuration (Section 3.2). Then, we fuse RGB and structural
normal supervision through an initial reconstruction while es-
timating occlusion in 3D (Section 3.3). Finally, we refine this
initial reconstruction using score distillation (Section 3.4).
Our whole pipeline is illustrated in Figure 3.

3.1. Preprocessing

Given a sequence of video frames capturing a moving per-
son, we prepare a set of estimates using off-the-shelf meth-
ods. Specifically, for each frame It, we estimate the fore-
ground mask Mt using SAM [27], generate a video-level
text prompt p using GPT-4o [1], obtain front and back
normal maps (Nt,

BNt) using ICON [51], and infer 2D
keypoints kt ∈ R137×2 with confidence ψt ∈ R137 using
OpenPose [4] including body, hands and facial landmarks.
Additionally, we extract SMPL-X body shape β ∈ R10

and body pose θt ∈ R52×3, as well as camera parameters
πt = [Kt ∈ R3×3,Et ∈ SE(3)] using SMPLer-X [3].

We find that high quality alignment between the repro-
jected SMPL-X model and human pixels is crucial to final
results. Indeed, most previous works [6, 18, 23, 29] jointly
refine SMPL/SMPL-X parameters along reconstructing the
human avatar. However, we find it sufficient to refine SMPL-
X in the preprocessing step, akin to SMPLify-X [38], without
joint optimizing the avatar. Concretely, we seek to solve the
following optimization problem that balances between pixel

alignment and temporal smoothness:

min
β,{θt},{bt}

λdataEdata + λsmoothEsmooth + λpreserveEpreserve,

Edata = ψtρ(kt − k̂t),

Esmooth = ∥ΘT
t−1Θt∥, Θt = Rodrigues(θt),

Epreserve = ∥β − β(0)∥+ ∥θt − θ
(0)
t ∥,

(1)

where ρ is the robust Geman-McClure function [14], k̂t is the
reprojected SMPL-X keypoints from current estimates, and
β(0),θ

(0)
t are the initial SMPL-X prediction. We set λdata =

100.0, λsmooth = 10000.0, λpreserve = 60.0 throughout our
experiments. We optimize with the second order LBFGS
optimizer [34] with a learning rate η = 1.0 for a total epochs
K = 40.

3.2. Globally-consistent surfel avatar

We encode the human appearance and geometry with a
global set of 3D Gaussian surfels [9] that allows expres-
sive differentiable rendering and surface modeling. Similar
to existing Gaussian-based avatars [18, 29, 59], we define
surfels in a single canonical space, which can be reposed
using forward skinning as opposed to backward root-finding
used in previous NeRF-based avatars [7, 23, 30]. A pictorial
illustration is shown in Figure 3.

Canonical representation. For each surfel g0 that lives in
the canonical frame t0, we define their attributes as

g0 ≡ (µ0,R0, s, c, τ), (2)

where the position µ0 ∈ R3 and the orientation R0 ∈ SO(3)
can be reposed, the scale s ∈ R and the color c ∈ R3 are
constant across poses. Additionally, we assign the occlusion
τ ∈ [0, 1] to each canonical surfel, with 1 indicating full oc-
clusion, for evaluation. Similar to GaussianAvatar [18], we
treat each surfel as an oriented round disk with isotropic scale

3



to prevent needle-like artifacts after reposing. We keep sur-
fels constantly opaque, i.e. o = 1, to avoid semi-transparent
surfaces after alpha compositing. The surfel normal n0 can
be read out trivially as the last column component in R0.

We find that explicit parameters tend to have large vari-
ance after convergence given sparse supervision, which leads
to high frequency artifacts when applying score distillation
sampling [41]. To this end, we employ a hybrid parameteri-
zation of surfel attributes. Specifically, we define µ0 and R0

as explicit parameters and use a hash-based MLP network Φ
to predict s and c:

Φ : µ0 7→ s, c, (3)

where each attribute has its own shallow MLP network, taken
as input a shared hash grid encoding [37]. We ablate over
this design choice in Section 4.5.

We initialize surfels in a predefined virtruvian pose by
subdividing corresponding SMPL-X mesh. Concretely, we
subdivide SMPL-X mesh twice and obtain N = 167333
oriented vertices, which is used to initialize µ0,R0. We
compute the initial s as the average point-to-point distance
between each surfel and its 3-nearest neighbors, as per [25].
Since we adopt implicit parameterization Φ for s, we su-
pervise Φ with our pre-computed (µ0, s) labels for proper
initialization.

Articulation representation. Given the SMPL-X parame-
ters β,θt, we can compute their corresponding bone trans-
formations {Bt,j} for each joints j. We then articulate each
canonical surfel g0 to posed surfel gt ≡ (µt,Rt, s, c) by
linear blend skinning

[Rt|µt] = Bt · [R0|µ0], where Bt =
∑
j

wjBt,j . (4)

wj is the average skinning weight of the nearest K = 30
SMPL-X vertices, weighted by the point-to-point distances
in canonical space, similar to [16, 18].

We note that, this articulation formulation is much simpler
than previous NeRF-based approach that uses backward
root-finding [7, 23, 30]. By adopting forward skinning, our
method naturally supports out-of-distribution reposing.

Rendering. Each posed surfel gt can be efficiently raster-
ized onto the image plane based on camera parameters πt.
For example, RGB image Ît can be rendered by

Ît(x) =
∑

i∈Ht(x)

Tiαi · ci, (5)

where Ti and αi are the transmittance and opacity of each
projected 2D Gaussian surfel. Ht(x) is the set of surfels
that intersect the ray originated from pixel x. We can render

mask M̂t, depth map D̂t, normal map N̂t, and occlusion
map Ôt similarly. This process is fully differentiable and
allows end-to-end training from 2D observations.

3.3. Initial reconstruction

We start our optimization process by initial reconstruction,
while reasoning about 3D occlusion of our model with re-
spect to the input views.

We adopt both image supervision and structural priors
from our preprocessed data for optimization. During each
training iteration, we randomly sample a training view with
its corresponding camera and SMPL-X parameters. Con-
cretely, we seek to solve the following optimization problem:

min
{µ0},{R0},Φ

Lrgb + λmaskLmask + λnormalLnormal + Lreg,

Lrgb = 0.2 · ∥It − Ît∥1 + 0.8 · SSIM(It, Ît) + LPIPS(It, Ît),

Lmask = ∥Mt − M̂t∥1,

Lnormal = lnormal(Nt, N̂t) + lnormal(
BNt,

BN̂t)

lnormal(N, N̂) = 0.2 ·NT N̂+ LPIPS(N, N̂).
(6)

Similar to TeCH [20], we find that LPIPS [56] works with
normal supervision and encourages crisp geometry over
overly smoothed solution. To render back normal BN̂t,
we rasterize by sorting surfels in descending depth order
as opposed to usual ascending order. Using back normal
supervision, the geometry of our avatar is constrained in
unobserved regions.

We set λmask = 1.0 and λnormal = 1.0 throughout our
experiments.

Our regularization term Lreg consists of normal-depth
consistency loss and curvature loss from [9], as well as
an offset and scale regularization from [18] that penalizes
irregular solution. This reconstruction process is trained
with an Adam optimizer [26] for a total steps K = 500. The
whole process takes about 5 minutes to finish.

As a side task, we are interested in estimating occlusion
of our human model during the optimization process for
quantify the portion of human body that has been observed
from input video.

This is achieved by optimizing occlusion map Ôt in each
training view per iteration, i.e.,

min
{τ}

∥Ôt∥1. (7)

Note that we detach all gradient from this objective towards
other surfel properties such that we are only estimating the
self-occlusion of our current geometry with respect to train-
ing views, without affecting the reconstruction process. We
find that it is necessary to perform back-face culling [9]
when rendering occlusion map. Without this operation, the
occlusion signal "leaks" onto the back of the human figure.
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3.4. Generative refinement

After initial reconstruction and occlusion estimation, we
have a partially completed avatar. We next refine the ini-
tial result by score distillation sampling (SDS) a diffusion
model [41].

In this work, we use ImageDream [48] as our diffusion
prior. Empirically, we find this image-conditional multi-
view diffusion model to be much more reliable compared
to other alternatives, such as MVDream [44] or SD [42].
These alternatives rely heavily on text prompt and often
produce overly saturated textures that are inconsistent with
the original video. For example, TeCH [20] needs to finetune
a SD model.

In addition to the set of losses in Equation 6, we sample
a novel view camera π̃ and render novel view Ĩt, Ñt during
each training iteration for SDS supervision using the SMPL-
X parameter in the current batch. The diffusion process is
conditioned on image prompts It, Nt and text prompt p,

min
{µ0},{R0},Φ

λsds
rgbL

sds
rgb + λsds

normalL
sds
normal,

Lsds
rgb = Ei,ϵ

[∥∥Ĩt − DenoiseΨ(Ĩt; It,p, i, ϵ)
∥∥2
2

]
,

Lsds
normal = Ei,ϵ

[∥∥Ñt − DenoiseΨ(Ñt;Nt,p, i, ϵ)
∥∥2
2

]
,

(8)
where DenoiseΨ denotes the a full denoising step from
timestep i to 0 using noise ϵ with pretrained parameter Ψ.
Please refer to ImageDream [48] for more detail. We first
refine the shape for K = 500 iterations by setting λsds

rgb =

0, λsds
normal = 10−4. We then refine the texture for K = 1000

iterations by setting λsds
rgb = 10−4, λsds

normal = 0. The whole
process takes about 20 minutes to finish.

4. Experiments
Our method is unique in being able to reconstruct self-
occluded human from a single video. We first compare
with HAVE-FUN [53] on its own benchmark. After care-
fully examining the actual occlusion in its evaluation, we
find that large portion (∼90%) of human body is observed
during training. We then devise our own experimental setup
to rigorously evaluate the performance of our approach on
self-occluded videos, both quantitatively and qualitatively,
discussed next.

4.1. Experimental setup

Datasets. While we primarily focus on reconstructing self-
occluded humans in-the-wild, it is unpractical to quantita-
tively evaluate solely based on internet footage. Therefore,
we show results on three types of dataset: FS-XHuman
used by HAVE-FUN [53], a re-purposed multi-view human

In practice we sample 4 views for [48] and discuss one-view rendering
for simplicity.

Figure 4. Qualitative results on DNA-Rendering dataset. For
each training view, we visualize the ground-truth novel view along
with predicted RGB rendering and normal map from different
approaches. Our method recovers photo-realistic and geometrically
plausible avatars comparing to baselines. For GART and GA, we
read out their normals by depth gradient [9, 19, 24].

dataset and a set of internet footage of moving people. Con-
cretely, we follow HAVE-FUN’s evaluation split, which
consists of 20 different subjects. We evaluate over few-
view reconstruction given 2 views, 4 views and 8 views,
respectively. After closer look, we find that FS-XHuman
has very few occlusion and thus propose our own evalua-
tion on DNA-Rendering dataset [8] due to its diversity and
capture quality. DNA-Rendering comes with ground truth
camera and SMPL-X annotations, making it suitable for
fair comparisons between different approaches. Finally, we
experiment with a set of in-the-wild videos from internet.
These videos feature severe self-occlusion, fast motion and
motion blur, making them much harder to reconstruct com-
pared to the ones captured from a light stage. We use them to
demonstrate the robustness of our method in the real-world
scenario.

Metrics. For quantitative assessment, we evaluate novel
view rendering on the FS-XHuman, DNA-Rendering and
show qualitative comparisons on in-the-wild videos. Con-
cretely, we evaluate standard PSNR, SSIM and LPIPS met-
rics from neural rendering literatures. In addition to that,
we evaluate the rendering quality in occluded regions using
mPSNR and mLPIPS [13, 21]. This evaluation shed light
on how different approaches balance between reconstruction
and generation. Since no ground-truth occlusion map exists
in DNA-Rendering dataset, we use the inferred occlusion
from our model for this task. We also propose a new metric
called Body Occlusion Ratio (BOR) to quantify the portion
of human body being seeing during training. It is computed
by averaging inferred per-surfel occlusion τ for each training
sequence.
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Baselines. We consider both reconstruction-based and
generation-based methods as baseline. For reconstruction-
based method, we evaluate against state-of-the-art Gaussian-
based avatars including GART [29] and GaussianA-
vatar [18] (GA). For generation-based method, there exists
no method that can handle video input. We therefore com-
pare against recent human-specific image-to-3D approach
SiTH [17] out of all candidates [2, 20, 57] due to its effi-
ciency and code availability. For these methods, we run
baselines on three randomly selected frame independently
and repose using the input SMPL-X parameters. As one
can expect, they are temporally inconsistent and have severe
reposing artifacts due to the inability to properly handle ar-
ticulation, which we show in Figure 5. The final quantitative
metrics are averaged across these independently generated
avatars.

4.2. Results on FS-XHumans dataset

To compare with concurrent work HAVE-FUN [53] that
combines reconstruction and generation, we evaluate our
method on FS-XHumans. Quantitative results are shown in
Table 2 and qualitative results are included in supplement.
Our method consistently outperforms HAVE-FUN in terms
of PSNR and SSIM while on-par with it for LPIPS metric.
We evaluate BOR for occlusion assessment in Table 3. As
demonstrated, around ∼90% human body is observed in
FS-XHumans, even though its evaluation tries to work in
few-view setting. Comparing to it, we propose a testing split
from DNA-Rendering, which aligns closer to in-the-wild
videos that have self-occlusion.

4.3. Results on DNA-Rendering dataset

DNA-Rendering dataset contains 500 human captures in a
light stage setup. We choose 7 sequences without object
interaction and loose clothing for our experiments. For each
video, we train from a single camera and evaluate novel view
rendering from 4 unseen cameras. We select the training
camera as the one that the human is facing to in the first
frame. With this simple rule, we already make sure that there
are parts of human body remaining self-occluded throughout
the video because the actors rarely orient on this dataset.
For validation camera selection, we uniformly sample from
the provided 60 cameras such that unobserved regions have
ground-truth pixels.

We report our quantitative results in Table 1. Our pro-
posed method outperforms all baselines on all metrics by
a substantial margin. We separate our baselines into two
categories: reconstruction-based methods GART and GA,
generation-based method SiTH. When evaluating against the
full image, denoted as “Full”, our method improves signif-
icantly over baselines, with +1.2 PSNR and -10% LPIPS
improvements comparing to reconstruction-based methods.
This improvement is even larger comparing to generation-

Figure 5. Comparison between our globally consistent avatar
and image-to-3D baseline. Our method is able to fuse all observa-
tions from a video and allow natural reposing.

based baseline SiTH in terms of PSNR by +5.3, with similar
-10% LPIPS improvement. It is perhaps not surprising giv-
ing that PSNR favors exactness over realism while LPIPS
does the other way around. It is also notable that our ap-
proach dramatically improves over the existing approaches
in both visible and occluded regions (noted as “Visible” and
“Occlusion” in the table).

We visualize our qualitative comparisons in Figure 4 with
both novel view RGB rendering and normal map predictions.
For GART and GA, we read out their normals by depth gra-
dient [9, 19, 24]. We want to emphasize our improvements
in three aspects. First, our method produces crisp geometry
details as suggested by predicted normal maps. Second, it is
clear to see that our method produces highly realistic synthe-
sis on the unobserved regions, e.g., around the back regions
in the second row. Reconstruction-based methods struggle
in these under-constrained areas. Third, our reconstruction
component helps prevent unnatural shapes – this is evident
in the first row where SiTH produces very thin arms.

Finally, we demonstrate that our approach benefits from
a globally consistent representation for avatar creation such
that we can fuse observations from multiple video frames.
We visualize our reposed avatar in Figure 5, comparing to
two different runs by SiTH, which can only condition on
a single input frame. The note three observations. First,
fusing observations from multiple frames by reconstruction
resolves ambiguity in seen regions (in blue bounding box),
where SiTH strugle to produce accurate shape solely based
on image prior. Second, SiTH produces inconsistent results
between runs as shown in the red bounding box. Third, our
globally consistent avatar representation allow much more
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Method Type Full Visible Occlusion

PSNR↑ LPIPS↓ mPSNR↑ mLPIPS↓ mPSNR↑ mLPIPS↓

SiTH [17] Gen. 17.84 0.065 14.55 0.282 9.63 0.271

GA [18]
Recon.

21.97 0.068 15.28 0.456 10.06 0.492
GART [29] 21.89 0.067 16.33 0.290 12.86 0.283

Ours Gen. + Recon. 23.16 0.055 19.96 0.227 14.54 0.253

Table 1. Quantitative results on DNA-Rendering dataset. We evaluate the novel view rendering performance of all approaches in full
image (“Full”), visible regions (“Visible”) and occluded regions (“Occlusion”). Our method consistently out-performs different baselines in
all metrics by a significant margin. Best metrics are marked as bold.

Method #Input PSNR↑ SSIM↑ LPIPS↓

SelfRecon [22]
8-shots 19.90 0.927 0.065

100-shots 20.70 0.943 0.063

TeCH [20] 1-shot 21.00 0.924 0.065

HaveFun [53]
2-shots 24.00 0.955 0.042
4-shots 25.60 0.963 0.035
8-shots 26.80 0.967 0.030

Ours
2-shots 25.18 0.958 0.049
4-shots 26.86 0.964 0.043
8-shots 27.94 0.968 0.039

Table 2. Comparison on FS-XHumans dataset. We compare
our methods with few-shot human reconstruction methods. Our
method consistently outperforms different baselines in PSNR and
SSIM metrics by a significant margin. Best metrics in 2-view/4-
view/8-view settings are marked as bold.

Dataset BOR

FS-XHumans [53] 0.202/0.138/0.095
DNA-Rendering [8] 0.460
In-the-wild 0.341

Table 3. BOR value of different datasets. FS-XHumans have 2-
view/4-view/8-view evaluation. However, only around ∼10% of hu-
man body remains unobserved. In comparison, our proposed DNA-
Rendering split aligns closer to self-occluded videos in-the-wild.

natural reposing comparing to SiTH mesh skinning.

4.4. Results on in-the-wild videos

We report the qualitative results of our method applied to in-
the-wild videos, as shown in Figure 6. Our dataset comprises
single human-centered internet videos with severe self-
occlusion. The first row of the figure displays the novel view
rendering results. We conducted comparisons with methods

Method Full Visible Occlusion

PSNR↑ LPIPS↓ mPSNR↑ mLPIPS↓ mPSNR↑ mLPIPS↓

W/o sds 21.47 0.065 17.14 0.275 9.78 0.441
W/o implicit 22.86 0.066 17.74 0.275 11.01 0.455

Ours w/ occ 23.58 0.055 17.91 0.256 12.15 0.324
Ours 23.51 0.055 18.28 0.247 11.93 0.324

Table 4. Ablation results on DNA-Rendering dataset. We ablate
the novel view rendering performance of all approaches in full
image (“Full”), visible regions (“Visible”) and occluded regions
(“Occlusion”). Our method consistently out-performs different
baselines in all metrics by a significant margin. Best metrics are
marked as bold.

GART and GA, which often fail to accurately reconstruct
human shape and texture under these challenging conditions.
In contrast, our method consistently produces high-detail
normal maps and realistic textures. Additionally, we include
our reposing results to further demonstrate the robustness
of our approach. Our method again is able to produce
photo-realistic rendering and accurate shape prediction.

4.5. Ablation

We conducted ablation study about our design choices and
consider following baselines: (1) our model with occlusion
masking in SDS loss as discussed in Section 3.4 (“Occ.
SDS”); (2) our model without the generation component
(“No SDS”); (3) our model without implicit parameteriza-
tion Φ (“No Φ”). Qualitative results are shown in Figure 7
and quantitative results are included in Table 4. Each
component is beneficial and contributes to our full model.

5. Discussion and Conclusion
While we present promising steps towards robust human
avatar recovery from in-the-wild videos several limitations
remain. It inherits the issue of generating saturated colors
from SDS-based methods, remains a test-time optimization
approach limiting interactive use, and lacks a comprehensive
in-the-wild dataset with ground-truth multi-view annotations
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Figure 6. Qualitative results on in-the-wild videos. We visualize novel-view rendering comparison in top left, our 360 rendering on top
right, and our bullet time rendering on the bottom. We visualize both the RGB rendering and normal map rendering in each result.

Figure 7. Ablation. We ablate over occlusion masking in SDS,
generation itself and our implicit parameterization Φ.

for better evaluation. Future work includes training human-
specific multi-view diffusion models on large-scale human
capture data and creating an in-the-wild human dataset with
multi-view validation. Despite these limitations, we pre-
sented SOAR for self-occluded avatar recovery from a single

in-the-wild video, employing a globally-consistent surfel
model for fusing noisy supervision and reposing, and leverag-
ing structural human normal priors and generative diffusion
priors. Our method recovers photo-realistic avatar models
with plausible shapes, significantly improving over exist-
ing methods. Experiments on multi-view datasets and in-
the-wild videos demonstrate that our method achieves state-
of-the-art performance compared to purely reconstruction-
based and generation-based methods.
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